Mechanical model of the ultrafast underwater trap of Utricularia.
نویسندگان
چکیده
The underwater traps of the carnivorous plants of the Utricularia species catch their prey through the repetition of an "active slow deflation followed by passive fast suction" sequence. In this paper, we propose a mechanical model that describes both phases and strongly supports the hypothesis that the trap door acts as a flexible valve that buckles under the combined effects of pressure forces and the mechanical stimulation of trigger hairs, and not as a panel articulated on hinges. This model combines two different approaches, namely (i) the description of thin membranes as triangle meshes with strain and curvature energy, and (ii) the molecular dynamics approach, which consists of computing the time evolution of the position of each vertex of the mesh according to Langevin equations. The only free parameter in the expression of the elastic energy is the Young's modulus E of the membranes. The values for this parameter are unequivocally obtained by requiring that the trap model fires, like real traps, when the pressure difference between the outside and the inside of the trap reaches about 15 kPa. Among other results, our simulations show that, for a pressure difference slightly larger than the critical one, the door buckles, slides on the threshold, and finally swings wide open, in excellent agreement with the sequence observed in high-speed videos.
منابع مشابه
Spontaneous Firings of Carnivorous Aquatic Utricularia Traps: Temporal Patterns and Mechanical Oscillations
Aquatic species of Utricularia are carnivorous plants living in environments poor in nutrients. Their trapping mechanism has fascinated generations of scientists and is still debated today. It was reported recently that Utricularia traps can fire spontaneously. We show here that these spontaneous firings follow an unexpected diversity of temporal patterns, from "metronomic" traps which fire at ...
متن کاملA dynamical model for the Utricularia trap.
We propose a model that captures the dynamics of a carnivorous plant, Utricularia inflata. This plant possesses tiny traps for capturing small aquatic animals. Glands pump water out of the trap, yielding a negative pressure difference between the plant and its surroundings. The trap door is set into a meta-stable state and opens quickly as an extra pressure is generated by the displacement of a...
متن کاملUltra-fast underwater suction traps.
Carnivorous aquatic Utricularia species catch small prey animals using millimetre-sized underwater suction traps, which have fascinated scientists since Darwin's early work on carnivorous plants. Suction takes place after mechanical triggering and is owing to a release of stored elastic energy in the trap body accompanied by a very fast opening and closing of a trapdoor, which otherwise closes ...
متن کاملFastest predators in the plant kingdom: functional morphology and biomechanics of suction traps found in the largest genus of carnivorous plants
Understanding the physics of plant movements, which describe the interplay between plant architecture, movement speed and actuation principles, is essential for the comprehension of important processes like plant morphogenesis. Recent investigations especially on rapid plant movements at the interface of biology, physics and engineering sciences highlight how such fast motions can be achieved w...
متن کاملCarnivorous Utricularia: the buckling scenario.
We review recent results about the functioning of aquatic carnivorous traps from the genus Utricularia. The use of high speed cameras has helped to elucidate the mechanism at the origin of the ultra fast capture process of Utricularia, at a millisecond time scale. As water is pumped out of the trap, pressure decreases inside the trap and elastic energy is stored due to the change of shape of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 83 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2011